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Abstract

Shakedown analysis for elastic–perfect plastic structures is discussed and a fast incremental-iterative solution

method is proposed, suitable for the FEM analyses of large structures.

The theoretical motivations of the proposed method are discussed in detail and an example of its implementation is

described with reference to plane frame analysis.

Some numerical results are presented showing the numerical performances of the method.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The elastic–plastic analysis has assumed a great importance also in civil engineering due to the diffusion

of the semi-probabilistic approach to limit states, such as that established in Eurocodes (the European
proposal codes), which allows the design of structures beyond the elastic limit.

When considering a single set of external loads, monotonically increasing with a load parameter, the

safety factor of an elastic–plastic structure can be effectively evaluated by numerical implementations of the

classical theorems of limit analysis [9–13] or, even more efficiently, by recovering the equilibrium path by

means of path-following algorithms [14,15], based on the Riks� arc-length method [16] and well suited to be

implemented in general purpose FEM codes (see [18,19] for an overview of these topics). It is known,

however, that the collapse multiplier doesn�t furnish a reliable safety index when the structure is subject to a

combination of loads that can vary, cyclically or in a generic way, inside a given load�s domain. In this case,
in fact, other different failure modes are possible that also have to be prevented. A continuous increase in

plastic deformations, along successive plastically admissible load cycles, could lead to a loss of the structure

functionality (incremental collapse or ratchetting) or produce the collapse due to fatigue (alternating

plasticity). Then, a further requirement has to be met, that the rising amount of plastic deformations be
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confined only to an initial phase after which the structure behavior, for any combination of load contained
in the load�s domain, is purely elastic. If this happens, we say that the structure shakes down to an elastic

state or, simply, shakedown occurs.

The definition of conditions that imply shakedown of elastic–perfectly plastic structures has been

widely studied, at least from a theoretical point of view, and shakedown theorems [20,36] currently

represent one of most important achievements of the theory of plasticity [20]. Noticeable developments

have been made that extend and generalize the shakedown theory. In particular a deeper insight into the

extensions of the classical theory to material with hardening effects, finite displacements, thermal and

dynamics effects can be found in the papers by Ceradini [21,22], Capurso [12], Gokhfeld e Cherniavsky
[23], K€oonig e Maier [2], Ponter [24], Stein et al. [25], Yan and Nguyen [26] and Polizzotto et al. [27,28].

The reader can refer to the book by K€oonig [3] and to the reviews [1–6], for a general overview and

historical details.

The use of these theoretical results suffers, still today, from the lack of efficient computational algo-

rithms able to calculate the shakedown safety factor, that is, the maximum load amplifier that ensures

shakedown, for large life-scale structures modeled using standard finite element formulations. As under-

lined by Groß-Weege [31] and by Zhang [30] and Janas and et al. [29], the proposed solution methods

appear to be aimed more at academic purposes or to the analysis of specific problems than to be effectively
implemented in FEM codes suitable for general technical applications. In effect most of the proposed

numerical methods attempt to evaluate the shakedown multiplier directly from the shakedown theorems

(direct methods). In this way, shakedown analysis is formulated as a standard constrained optimization

problem to be solved by general methods of mathematical programming without exploiting the particular

features of the structural problem. That implies a low computational efficiency in the overall solution

process and practically prevents shakedown analysis from being easily implemented in commercial finite

element codes.

More recently, an indirect approach has been proposed by Ponter et al. [24] that is based on the so-called
elastic compensation methods. The shakedown safety factor is evaluated through an iterative sequence of

pseudo-elastic solutions that produces a monotonically decreasing sequence of upper bounds that con-

verges to the exact solution (obviously except for the approximations due to the finite element discreti-

zation). The method appears to be more efficient than direct methods and more suitable to a finite element

implementation but it can still hardly be considered completely satisfactory from a computational point of

view when compared with standard limit analysis algorithms. In fact it is characterized by a relatively slow

convergence and requires a large number of complete elastic re-analyses (including the assemblage of the

pseudo-elastic stiffness matrix and its Choleski decomposition).
A new method for the evaluation of the shakedown safety factor for elastic–perfectly plastic structures

is presented in this paper. It is based on an iterative technique which has some analogies with the Riks

path-following algorithm, currently used in elastic–plastic analysis to evaluate the equilibrium path of a

structure, and offers the same characteristics of robustness, efficiency and computational requirements as

that method. The full theoretical and computational aspects of the proposed method are discussed in

detail, including the convergence proof of solution algorithms and numerical testings. The simple case of

plane frames has been used here for exemplifying the implementation details and the numerical perfor-

mances of the proposed method. Its extension to more complex structures can be considered quite
straightforward.

The paper is organized as follows: Section 2 provides an introductory summary of classical shake-

down theory; a reformulation of this theory, suitable for numerical analysis, is given in Section 3 and

some preliminary results are provided; the proposed iterative method is described in Section 4 and

its convergence properties are discussed; Sections 5 and 6 use the plane frame context to show an ex-

ample of the actual implementation of the method; further comments and conclusions are given in

Section 7.
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2. Shakedown theory

In order to render the paper as self-contained as possible, we recall in this section a brief overview of the

elastic–plastic theory and of the shakedown problem. The reader can refer to the general presentation by

Koiter [20] or to the book by K€oonig [3], for a more detailed discussion.

2.1. Basic rules of the elastic–plastic theory

The basic rules of the classical elastic–plastic theory for perfect-plastic materials can be summarized as

follows:

1. Stress and strain fields r½x� 2 Rd and e½x� 2 Rd , x 2 B can be defined, d being the number of independent

components of both r and e (d ¼ 6 in 3D Cauchy model), and B is the body domain. The dot-product

rTe is also defined for each x 2 B and we haveZ
B
�rrT _eedv ¼ 0 ð2:1Þ

for all self-equilibrated stress �rr and kinematically compatible strain increment field _ee. Eq. (2.1) mutually

defines the subspaces S and K collecting all self-equilibrated stress fields and all kinematically com-

patible strain increments. We will generally omit, when referring to field relationships, explicit citations

to 8x 2 B, which will be taken as implicit, for a lighter notation.

2. Stress r is constrained to belong to the admissible domain

E :¼ r : f ½r�f 6 0g; ð2:2Þ
where f ½r� is a convex yield function in Rd , such that f ½0� < 0. Obviously, E will be closed and convex in

Rd and its boundary oE is characterized by f ½r� ¼ 0.

3. The total strain increment _ee can be subdivided into the elastic part _eee and the plastic part _eep, and the two

strain components are additive:

_ee ¼ _eee þ _eep: ð2:3Þ
4. The elastic component _eee is linearly linked to the stress through the elastic law:

_rr ¼ E _eee ¼ Eð_ee � _eepÞ; ð2:4Þ
where E is the elastic tensor, symmetric and positive definite.

5. The plastic component _eep can be different from zero only if the stress r belongs to oE and is defined by
the plastic flow rule:

_eep ¼ _llg½r�; _llP 0; _ll _ff ¼ 0; _llf ¼ 0; ð2:5Þ
vector g being contained in the subdifferential 1 of ½r� of the function f in r.

By these hypotheses, the following Drucker�s conditions holds:

ry

�
� r

�T
_eep P 0; 8r 2 E; ð2:6Þ

1 We briefly recall that the subdifferential of a function f in a point r is the cone defined by the gradients of the function computed at

all points adjacent to r at infinitesimal distance and in all directions. It coincides with the classical gradient in regular points. The

reader can refer to [34] for a general overview on convex analysis.
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ry and _eep being related by the flow rule (2.5). Since r ¼ 0 is internal to E, by definition, we also have

rT
y _ee

p > 0; 8_eep 6¼ 0: ð2:7Þ

2.2. Basic assumptions of shakedown analysis

We assume that the external load p½t� is expressed as a combination of basic loads pi, varying arbitrarily

with time t but, in any case, belonging to the admissible load domain

P :¼ p½t� :¼
Xp
i¼1

ai½t�pi : amin
i

(
6 ai½t�6 amax

i ; 8t
)
; ð2:8Þ

where the factors ai½t� are contained in a polyhedron in Rp [27,29]. Such an assumption conforms to the

external load description used in many civil engineering norm codes and derives from the fact that the real

loads evolution is often unknown while, in some statistical way, the excursion of the minimum and
maximum values for every basic load pi is known or, at least, we can get meaningful reference values for the

maximum or minimum of the load factors for a given life-time of the structure. Obviously P is closed and

convex, by definition.

If denoting with rei the elastic solution due to the single basic load pi we can define the domain Se of the

elastic stresses re½t� associated to p½t� in the form

Se :¼ re½t� :¼
Xp
i¼1

ai½t�rei : amin
i

(
6 ai½t�6 amax

i ; 8t
)
: ð2:9Þ

Set Se, represents the envelope of the elastic stresses, and collects the local values of the elastic stresses

produced, at different instants, by load paths p½t� contained in P. Obviously Se is also closed and convex.

It is worth mentioning that time is assumed here as an evolution variable since we always consider

negligible the dynamic effects due to the external loads. However, our presentation can be easily generalized
to the presence of dynamic effects (see Ceradini [21,22] and [27,28]).

We can now state the following definition:

Definition 2.1 (Shakedown). We say that a structure shakes down to an elastic state or, simply, shakedown

occurs if, after an initial phase during which the occurrence and the accumulation of plastic strain incre-

ments are possible, the structural response, for every load path p½t� 2 P; tends to be purely elastic and is

characterized by a finite total plastic work. That isZ 1

t¼0

Z
B

r½t�T _eep½t�dv
� �

dt < 1;

where r½t� and ep½t� are the stress and plastic strain produced during the loading process, a superposed dot
indicates time differentiation and t ¼ 0 refers to the initial virgin state ðep½0� ¼ 0Þ:

An obvious corollary of this definition is that shakedown implies the existence of, at least, one time

independent stress field �rr 2 S such that

f ½re½t� þ �rr�6 0; 8re½t� 2 Se; ð2:10Þ
because, due to Eq. (2.7), we necessarily have limt!1 _eep½t� ¼ 0, 8p½t� 2 P and then, due to the uniqueness
of the incremental elastic solution, limt!1 _rr½t� � _rre½t� ¼ 0, that is, limt!1 r½t� ¼ re½t� þ �rr, 8re½t� 2 Se.

Furthermore, r½t� and re½t� being equilibrated by the same load p½t�, by definition, their difference �rr is self-

equilibrated.
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2.3. Shakedown theorems

Sufficient and necessary conditions for shakedown are given in the classic Bleich–Melan�s static theorem
[35,36] and Koiter�s kinematic theorem [37]. For the reader�s convenience, we recall both theorems in some

detail here.

Theorem 2.1 (Static theorem of shakedown). Shakedown occurs if there exists a time-independent self-
equilibrated stress field �rr such that

r�½t� ¼ re½t� þ �rr; f ½r�� < 0; 8re½t� 2 Se: ð2:11Þ

Proof. For all loading paths p½t� 2 P the evolution law for stress r½t� and strain e½t� acting in the structure

can be expressed as:

r½t� ¼ re½t� þ Dr½t�;
e½t� ¼ E�1ðre½t� þ Dr½t�Þ þ ep½t�:

�
Dr½t� being a self-equilibrated stress field and ep½t� the plastic strain associated to r½t�. If the following

positive function is introduced

W½t� :¼ 1

2

Z
B
ðr � r�ÞTE�1ðr � r�ÞdvP 0

by differentiating with respect to t and denoting by _eee½t� ¼ E�1 _rre½t� the strain associated to _rre½t�, we have

_WW½t� ¼
Z
B
ðr � r�ÞTE�1ð _rr½t� � _rreÞdv ¼

Z
B
ðr � r�ÞTð_ee½t� � _eee½t�Þdv�

Z
B
ðr � r�ÞT _eep dv:

Obviously, both _ee½t� and _eee½t� are kinematically compatible and r � r� is self-equilibrated. So the first in-

tegral in the right side of the equation is zero. Furthermore, r½t� 2 E being associated by the flow rule (2.5)

to _eep and r� being internal to E, we can apply inequality (2.6) in strict form. We obtain

_WW½t� ¼ �
Z
B
ðr � r�ÞT _eep dv < 0 if _eep 6¼ 0:

So, function W½t� is both lower bounded and monotonically decreasing during a plastic process. To avoid

contradiction, this implies that

lim
t!1

_WW½t� ¼ 0 ) lim
t!1

_eep ¼ 0:

Furthermore, by assuming m > 0 small enough to satisfy

f ½ð1þ mÞr�½t��6 0;

we have, because of Eq. (2.6),

ðr½t� � ð1þ mÞr�½t�ÞT _eep½t�P 0;

that is, integrating on B and remembering the definition of _WW½t�,

m
Z
B

r½t�T _eep dv6 ð1þ mÞ
Z
B
ðr½t� � r�½t�ÞT _eep dv � �ð1þ mÞ _WW½t�:

R. Casciaro, G. Garcea / Comput. Methods Appl. Mech. Engrg. 191 (2002) 5761–5792 5765



Then, integrating on the overall loading process, we obtainZ 1

t¼0

Z
B

r½t�T _eep½t�dv
� �

dt6
1þ m

m
ðW½0� � W½1�Þ6 1þ m

2m

Z
B
�rrTE�1�rrdv < 1

because of ep½0� ¼ 0, i.e. r½0� ¼ re½0�, by definition and W½1�P 0. So shakedown condition is satisfied. �

Theorem 2.2 (Kinematical theorem of shakedown). The structure does not shakedown if there exists a
kinematical admissible strain field _eep ¼

P
k _ee

p
k 2 K such that

9rek 2 Se :

Z
B

X
k

ðrek � rykÞT _eepk dv > 0; ð2:12Þ

where f_eepk ; k ¼ 1; 2; . . .g is a set of plastic strain increments and ryk are associated to _eepk through the flow rule
(2.5).

Proof. We will prove the statement by absurd. By assuming that shakedown occurs, due to Eq. (2.10),

a self-equilibrated time-independent stress state �rr will exist such that

f ½re þ �rr�6 0; 8re 2 Se:

From the Drucker condition (2.6) we obtain:

ðryk � rek � �rrÞT _eepk P 0; 8k and 8rek 2 Se:

Then, by summing on k and integrating on the body volume B, we obtain:Z
B

X
k

ryk

�
� rek

�T
_eepk dv�

Z
B
�rr_eep dvP 0:

The last integral being zero because �rr is self-equilibrated, the previous condition impliesZ
B

X
k

rek

�
� ryk

�T
_eepk dv6 0; 8rek 2 Se

which is absurd by being in contradiction with the theorem requirements. �

2.4. Shakedown safety factor

Structural safety with respect to shakedown can be evaluated by relating to the larger multiplier factor

that can be used for amplifying the load domain P or, equivalently, the stress domain Se allowing for the

structure shakedown.

We call shakedown safety factor (or shakedown multiplier) ka this value and can define it more precisely,

by referring to the amplified elastic stresses kre, as the sup of strictly safe �kks multipliers that satisfies the
requirements of the static theorem. that is,

9�rr 2 S : f ½�kksre þ �rr� < 0; 8re 2 Se: ð2:13Þ
Equivalently, it can be defined as the inf of strictly unsafemultipliers �kku that satisfies the requirements of the
kinematical theorem, that is

9_eep :¼
X
k

_eepk 2 K 9rek 2 Se :

Z
B

X
k

ð�kkurek � rykÞT _eepk dv > 0; ð2:14Þ
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ryk and _eepk being associated through the flow rule (2.5). The two definitions actually coincide, that is,

ka :¼ sup �kks ¼ inf �kku: ð2:15Þ
This can be easily proved by assuming ka be characterized by the condition

ka : min
�rr

max
re;x

f ½kare

�
þ �rr�

�
¼ 0; �rr 2 S; re 2 Se; x 2 B:

Due to convexity of f ½r� and the assumption f ½0� < 0, we have

f ½cr�6 cf ½r� þ ð1� cÞf ½0� < 0 if 06 c < 1; f ½r�6 0

and then we obtain

min
�rr2S

f �kksre

"
þ

�kks

ka
�rr

#
< 0; 8re 2 Se if �kks < ka:

Therefore, �kks < ka is strictly safe according to definition (2.13). Conversely, due to Eq. (2.6), we have

min
�rr2S

max
re2Se

ðry

�
� kare � �rrÞT _eep

�
P 0; 8_eep;

ry and _eep being associated by the flow rule (2.5) and the equal sign being attained for some r�
yk :¼ kar

�
ek þ �rr�

and _eep�k , by definition. We can characterize this solution by the condition

min
_ee
p

k ;�rr2S

Z
B

X
k

ðryk � kar
�
ek � �rrÞT _eepk dv ¼ 0;

summation being extended to all k. That impliesZ
B

d�rrT
X
k

_eep�k dv ¼ 0; 8d�rr 2 S;

that is, because of Eq. (2.1),
P

k _ee
p�
k 2 K. Due to Eq. (2.7), we have furthermoreZ

B

X
k

kar
�T
ek _ee

p�
k dv ¼

Z
B

X
k

r�T
yk _ee

p�
k dv > 0

and consequentlyZ
B

X
k

ð�kkur
�
ek � r�

ykÞ
T _eep�k dv > 0 if �kku > ka:

Therefore �kku > ka is strictly unsafe according to definition (2.14).

In the sequel it will be convenient to refer to the safe multipliers ks and unsafe multipliers ku defined
through Eqs. (2.13) and (2.14) by relaxing the ‘‘<’’ and ‘‘>’’ conditions into ‘‘6’’ and ‘‘P’’ ones. Obviously

we obtain

ka ¼ max ks ¼ min ku:

2.5. Some comments

It is worth noting that the static shakedown theorem is a generalization of the static limit analysis

theorem for a combination of independent external loads varying in an admissible domain P. In particular

the static limit analysis theorem is a special case of the static shakedown theorem for a single external load
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(p ¼ 1; 06 a1 6 k). Analogously, the kinematical shakedown theorem is a generalization of the kinematical
theorem of the limit analysis and the latter can be considered its specialization for a single load. As in limit

analysis, a constant self-equilibrated prestress is without influence on the shakedown multiplier.

Also note that static shakedown theorem assures the elastic multiplier

ke ¼ max k : f ½kre�6 0; 8re 2 Se

to be smaller (or, at least not larger) than the shakedown multiplier ka. In fact, by adding to the elastic

stresses kre½t� a constant (zero) self-equilibrated stress, we are able to satisfy the theorem requirements.
Conversely, the shakedown kinematic theorem assures that, for each load combination p 2 P, the collapse

multiplier

kc ¼ min k :

Z
B
ðry � kreÞT _eep dv ¼ 0; 8re 2 Se; 8_eep 2 K

is larger (or, at least, not smaller) than ka. The shakedowm multiplier is then bounded as follows:

ke 6 ka 6 kc:

We can mention that the previous statements provide rational motivations for the use of the elastic

multiplier in practical structural design. In fact in this way it is possible to surpass the shakedown analysis

while banally fulfilling its requirements. However, it has to be considered that an explicit shakedown

analysis is necessary when the design is based on nonlinear methods, procedures based on the evaluation of
the collapse multiplier being unsafe.

3. A shakedown formulation suited to FEM analysis

A reformulation of the shakedown problem, suitable for FEM implementation, is presented in this

section and some preliminary results are obtained that will be useful for discussing the convergence

properties of the proposed solution method.

3.1. Shakedown admissible domain

It is convenient to introduce the shakedown yield function defined as

fs½r; k� :¼ max
re2Se

ff ½kre þ r�g ð3:1Þ

and the related shakedown admissible domain

Es½k� :¼ fr : fs½r; k�6 0g ð3:2Þ

that represents the set of all possible translations r of domain kSe within E (see Fig. 1). Obviously, due to

the assumption f ½0� < 0, Es½k� is not void for sufficiently small positive values of k. Furthermore, since both

S and E are closed and convex, so Es½k� it is. We also have:

Es½k1� 6¼ ;; Es½k1� internal to Es½k2� if k2 < k1 < �kk :¼ supfk : Es½k� 6¼ ;g: ð3:3Þ

Definition (3.2) implies the equivalence between the following statements

ðkre þ rÞ 2 E () r 2 Es½k�:
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Then, for k6 �kk and ry 2 oEs½k�, one or more tension fields ryk ¼ krek þ ry 2 oE can be associated to ry ,

as shown in Fig. 1. We have, from condition (2.6)

ðry � rÞTep ¼
X
k

ðryk � rkÞT _eepk P 0; 8r 2 Es½k�; ð3:4Þ

where rk :¼ krek þ r 2 E, _eepk are the plastic strains associated to ryk, and ep, defined by the combination

ep :¼
X
k

_eepk ð3:5Þ

is a plastic strain increment we can associate to ry . Condition (3.4) implies the convexity of function fs½r; k�
and a normality rule between ry and ep:

ep ¼ lg; g 2 ofs½ry ; k�; l P 0; lfs ¼ l _ffs ¼ 0: ð3:6Þ

3.2. The shakedown problem

Using the previous definitions, we can derive a simple characterization for the shakedown safety factor.

We obtain, from static theorem and Eq. (3.1),

ks 6 ka if 9�rr 2 S : fs½�rr; ks�6 0 ð3:7Þ

and, from kinematic theorem and the assumptions ry ¼ ryk � krek and ep ¼
P

k _ee
p
k ,

ku P ka if 9ep 2 K :

Z
B

rT
y e

p dv6 0; ep 6¼ 0: ð3:8Þ

Fig. 1. Elastic domains E and Es½k�.
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We can now define the shakedown problem:

Definition 3.1 (Shakedown problem). Determine the shakedown safety factor

ka :¼ max ks ¼ min ku;

ks and ku being the ‘‘safe’’ and ‘‘unsafe’’ multipliers defined according to Eqs. (3.7) and (3.8).

3.3. Return mapping to the admissible domain

Starting from a given amplifier k6 �kk and a stress r�, not necessarily contained in the admissible do-

main Es½k�, we can define the following process, which we call return mapping to the admissible domain

(Fig. 2)

r ¼ ra½r�; k� :¼ r� � Eep; r 2 Es½k� ð3:9Þ
that allows us to determine an associated stress r, contained in Es½k� and related to ep by the flow rule

condition (3.6) we can rewrite

ep ¼ lg; g 2 ofs½r; k�; l :
¼0; if fs½r�; k� < 0;
P0; fs½r; k� ¼ 0; if fs½r�; k�P 0:

�
ð3:10Þ

We know (see [18]) that the reduction scheme (3.9) and (3.10) corresponds to the so-called ‘‘return mapping

by closest-point projection’’ and can be conveniently obtained by minimizing the Haar–K�aarm�aan function,

that is, by the condition:

/½r � r�� :¼ 1
2
fðr � r�ÞTE�1ðr � r�Þg ¼ min; 8r 2 Es½k�; ð3:11Þ

which will prove to be better suited for the numerical implementation. Obviously, defined as the minimum

of a strictly convex function on a convex domain, ra is a single valued function of both e and k.

Fig. 2. Elastic domain Es½k� for k2 > k1.
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3.4. Basic properties of the return mapping scheme

In order to better understand the solution algorithm, that will be proposed in the next section, and prove

its convergence properties, it is convenient to state some basic characteristics of the return mapping scheme

(3.9) and (3.10).

Let fk < �kk; r0g be an initial state and let r� ¼ r0 þ Ee, we can express r as a function of e:

r ¼ ra½e; k� :¼ ra½r0 þ Ee; k� ¼ r0 þ Eðe � epÞ: ð3:12Þ
Noticeable properties of this function are given by the following lemmas:

Lemma 3.1. Function ra½e; k� is directionally differentiable with respect to both e and k. Furthermore there
exists a convex potential function W½e; k� such that

ra½e; k� ¼
oW½e; k�

oe

so the tangent operator

Et½e; k� :¼
ora

oe
¼ o2W

oe2
ð3:13Þ

is self-adjoint: Et ¼ ET
t .

Proof. This is a classical result in incremental plasticity (e.g. see [38,39]) and derives directly from the

definition of ra½e; k� through Haar–K�aarm�aan condition (3.11). It can be easily proven by considering that,

due to the assumption on f ½r� and definition (3.1), function fs½r; k� is a bounded, single valued continuous

mapping Rdþ1 ! R, so it is directionally differentiable. Therefore, for any path fe þ têe; k þ tk̂kg, tP 0, we

can define the directional derivatives rt½e; k; k̂k� and E t½e; k; êe� such that

dr ¼ Et de þ rt dk:

The existence of the potential function W is assured ifI
C

ra½e; k�T de ¼ 0

along any closed curves C in the e space. Letting de ¼ E�1 dra þ dep we can write

rT
a de ¼ rT

aE
�1 dra þ rT

a dep ¼ d 1
2
rT
aE

�1ra

�
þ rT

a e
p
�
� drT

a e
p

that impliesI
C

rT
a de ¼ �

I
C
drT

a e
p:

Now, due to the flow rule (3.10), we have ep ¼ 0 if ra is internal to Es½k�; we have dra ¼ 0 if ra corresponds
to a corner point of oEs½k� and ep is internal to the cone of normals, and drT

a e
p ¼ 0 in other cases. Therefore,

we obtain
H
c drT

a e
p � 0, by proving the second part of the statement. �

Lemma 3.2. Let k < �kk, r0 be an initial stress and r1 and r2 be stresses obtained from the strain increments
e1 and e2 through return mapping (3.11):

r1 ¼ ra½e1; k� ¼ r0 þ Eðe1 � e
p
1Þ;

r2 ¼ ra½e2; k� ¼ r0 þ Eðe2 � e
p
2Þ;

�
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where e
p
1 and e

p
2 are related to r1 and r2 through the flow rule (3.6). The following conditions hold:

06 ðr2 � r1ÞTðe2 � e1Þ6 ðe2 � e1ÞTEðe2 � e1Þ
and the occurrence of ðr2 � r1ÞTðe2 � e1Þ ¼ 0 implies

r1 ¼ r2:

Proof. Druker�s condition (2.6) provides

ðr2 � r1ÞTep2 P 0; ðr1 � r2ÞTep1 P 0;

then, by their combination, we obtain

ðr2 � r1ÞTðep2 � e
p
1ÞP 0:

From Eq. (3.2) we also have

ðr2 � r1Þ ¼ Eðe2 � e1Þ � Eðep2 � e
p
1Þ:

We finally obtain:

ðr2 � r1ÞTðe2 � e1Þ ¼ ðe2 � e1ÞTEðe2 � e1Þ � ðep2 � e
p
1Þ

T
Eðep2 � e

p
1Þ � ðr2 � r1ÞTðep2 � e

p
1Þ

6 ðe2 � e1ÞTEðe2 � e1Þ � ðep2 � e
p
1Þ

T
Eðep2 � e

p
1Þ6 ðe2 � e1ÞTEðe2 � e1Þ;

ðr2 � r1ÞTðe2 � e1Þ ¼ ðr2 � r1ÞTE�1ðr2 � r1Þ þ ðr2 � r1ÞTðep2 � e
p
1ÞP ðr2 � r1ÞTE�1ðr2 � r1Þ

that proves the lemma statement. �

Lemma 3.3. Matrix Et½e; k; e� satisfies the conditions

06 eTEte6 eTEe; 8e:

Proof. The proof derives directly from Lemma 3.2 by taking e :¼ e2 � e1 for e2 ! e1. �

Lemma 3.4. Let r1 :¼ ra½e1; k1� and r2 :¼ ra½e2; k2� we can write their difference in the form

r2 � r1 ¼ rs½e1; k1; k2�ðk2 � k1Þ þ Es½k2; e1; e2�ðe2 � e1Þ:

Furthermore, we have

Es ¼ ET
s ; 06 eTEse6 eTEe; 8e

and

rs½e1; k1; k2�Tep < 0 if ep :¼ e
p
11 if k1 6 k2

e
p
12 if k2 < k1

� �
6¼ 0;

where e
p
11 and e

p
12 are the plastic strain associated to ra½e1; k1� and ra½e1; k2�, respectively.

Proof. The first part of the statement is obtained directly by defining Es and rs by the secant ratios

rs½e1; k1; k2� :¼
Z 1

0

or½e1; k½t��
ok

dt ¼
Z 1

0

rt½e1; k½t��dt; k½t� :¼ tk1 þ ð1� tÞk2;

Es½k2; e1; e2� :¼
Z 1

0

or½e½t�; k2�
oe

dt ¼
Z 1

0

Et½e½t�; k2�dt; e½t� :¼ te1 þ ð1� tÞe2:
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The second part of the lemma is simply obtained by observing that Es is obtained as an average, on the

segment t 2 ½0 � � � 1�, of matrix Et and recalling Lemmas 3.1 and 3.3. Finally, the third part is obtained by

observing that, due to Eqs. (2.6) and (3.3), we have

ðra½e1; k1� � ra½e1; k2�ÞTep11 > 0 if k1 < k2; e
p
11 6¼ 0;

ðra½e1; k2� � ra½e1; k1�ÞTep12 > 0 if k2 < k1; e
p
12 6¼ 0

and, for k2 ! k1 we obtain, by continuity,

rs½e1; k1; k1�ep11 < 0 if e
p
11 6¼ 0: �

4. An iterative algorithm for shakedown analysis

A solution method, suitable to FEM analysis, is proposed in this section for the shakedown problem 3.1.

The method is based on an incremental-iterative process producing a sequence kðkÞ, k ¼ 1; 2; . . . of multi-

pliers which, apart from the errors implied by the discretization, are safe according to Eq. (3.7) and con-

verge monotonously to the shakedown safety factor ka.

4.1. Finite element discretization

Assuming the structure has already been modeled by a standard FEM discretization, let u 2 RN be the
vector collecting all free nodal displacements, u0 its initial value and e½u� :¼ Dðu� u0Þ the (kinematically

compatible) local strains associated to the displacement increment u� u0 through compatibility matrix

D½x�. Assuming k6 �kk we can define the internal force vector s½u; k� 2 RN expressing the structural response

consequent to the nodal displacements u:

s½u; k� :¼
Z
B
DTr½u; k�dv; r½u; k� :¼ ra½r0 þ Ee; k� ð4:1Þ

and the symmetric, positive definite elastic stiffness matrix K e 2 RN � RN

K e :¼
Z
B
DTEDdv; K e ¼ KT

e > 0 ð4:2Þ

by the energy identities:

duTs½u; k� �
Z
B

deTr½u; k�dv; duTK e du �
Z
B

deTE dedv; 8du; de :¼ Ddu; ð4:3Þ

E being the elastic matrix, linking the strain vector e to the stress vector r and r0 the initial stress state. Note

that r½u; k� 2 Es½k�, by definition. According with Eq. (2.1), self-equilibrated stresses are characterized, for

the discrete model, by the condition

s½u; k� ¼ 0: ð4:4Þ
Using previous notations, the shakedown problem in Definition 3.1 can be rewritten in discrete

(approximate) form. We have to determine

ka :¼ max k : 9u : s½u; k� ¼ 0: ð4:5Þ

So formulated, the shakedown problem looks very similar to the discrete formulation of the static theorem

of limit analysis, the only difference being the role of the safety multiplier k which acts as an internal

parameter of function fs½r; k� in spite of being an external load multiplier. However, this difference can
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hardly be considered meaningful. For instance, in the case of monotonous loading, we can write the limit

analysis problem exactly in the form (4.5) if using the safety factor as multiplier for the elastic stress so-

lution in place of a load multiplier.

The analogies between the two problems suggest that the methods available for solving limit analysis

problems can be directly extended to the solution of shakedown ones. The solution method proposed in this

paper actually follows this line. It can be considered a direct adaptation to shakedown of the so-called strain

driven algorithm for incremental elastic–plastic analysis [39] and corresponds to a direct extension of the

arc-length path-following method described in [14].
Some comments are useful here, before entering into the details of the proposed method. First of all,

note that, constitutive laws being locally defined, the return mapping scheme

r :¼ ra½r0 þ Ee; k�; e :¼ Dðu� u0Þ ð4:6Þ
can apply separately for each element (or Gauss point, if the element is defined by numerical integration).

Therefore, the evaluation of the internal force vector s½u; k� for given u and k through Eq. (4.1) is actually a

very simple and computationally fast process. Some caution however has to be used in order to reduce
discretization errors and avoid generating incoherencies. It is known in fact (see [7,8]) that strictly com-

patible formulations can produce discretization locking; equally, a careless use of collocation procedures

can lose energy conservation laws.

A complete discussion of this topic is not possible here. As a general rule, we can suggest that discrete stress

field r be defined by extending Haar–K�aarm�aan equation (3.11) to the whole element, that is by the condition

/e :¼
1

2

Z
Be

fðr � r�ÞTE�1ðr � r�Þgdv ¼ min; r½x� 2 Es½k�; 8x 2 fx1; . . . ; xng; ð4:7Þ

where Be is the element volume, r� :¼ r0 þ Ee. xi; i ¼ 1; . . . ; n is a discrete set of control points, such that to
discretize, at least approximately, admissibility condition r 2 Es½k�, 8x 2 Be, and r is self-equilibrated within

the element or, at least, satisfies Eq. (2.1) in Be for any de :¼ Ddu. The implementation of condition (4.7) is

quite easy. An example will be given in Section 5.3, with reference to the simple case of beam elements.

Note also that, as a consequence of Lemmas 3.1 and 3.4, two different states ðu1; k1Þ and ðu2; k2Þ, satisfy
the equation

r½u2; k2� � r½u1; k1� ¼ Es½k2; e1; e2�ðe2 � e1Þ þ rs½e1; k1; k2�ðk2 � k1Þ;

where e1 ¼ Du1, e2 ¼ Du2. Then, by integrating on the volume and introducing the secant operators

K s½k2; u1; u2� :¼
Z
B
DTEs½k2; e1; e2�Ddv; ys½u1; k1; k2� :¼

Z
B
DTrs½e1; k1; k2�dv; ð4:8Þ

we obtain

s½u2; k2� � s½u1; k1� ¼ K s½k2; u1; u2�ðu2 � u1Þ þ ðk2 � k1Þys½u1; k1; k2�: ð4:9Þ
Due to Lemma 3.4, matrix K s is obviously symmetric by construction and satisfies the conditions

06 duTK s du6 duTK e du; 8du: ð4:10Þ
Finally, it is worth mentioning that, the return mapping scheme (4.6) requires kj 6

�kk; 8j. We can compute
�kk very easily as the smallest k value that renders Es void for some x 2 B, which is obtained by scanning all

control points, once for all, at the beginning of the analysis.

4.2. The proposed solution method

We determine the shakedown limit state, that is the limit shakedown multiplier ka, the related admissible

self-equilibrated stress field ra and the corresponding induced displacement field ua, though a sequence of

5774 R. Casciaro, G. Garcea / Comput. Methods Appl. Mech. Engrg. 191 (2002) 5761–5792



admissible safe states xðkÞ :¼ fkðkÞ; rðkÞ; uðkÞg, k ¼ 1; 2; . . ., starting from the elastic limit state xð0Þ :¼
fke; 0; 0g, such that sðkÞ :¼ s½uðkÞ; kðkÞ� ¼ 0, 8k and monotonous non decreasing in kðkÞ. The sequence is ar-

rested when the limit shakedown state xa is reached, which is obtained when kðkþ1Þ ¼ kðkÞ.

In each step of the process, the new state xðkÞ is obtained from the previous one xðk�1Þ using an iterative

scheme which, starting from x0 :¼ xðk�1Þ, produces a convergent sequence of values xj :¼ fkj; rj; ujg, j ¼
1; 2; . . . by recursively updating the displacement vector and the load multiplier:

ujþ1 :¼ uj þ _uuj;

kjþ1 :¼ kj þ _kkj;

�
ð4:11Þ

corrections _uuj and _kkj being defined in order to satisfy, at least approximately, the equilibrium condition

s½ujþ1; kjþ1� ¼ 0 required by Eq. (4.5), while rjþ1 is defined by the return mapping (4.6).

We have already seen that obtaining rjþ1 from kjþ1 and ujþ1 is quite straightforward, so we can con-
centrate on the updating of uj and kj, which is obtained by defining corrections _uuj and _kkj as the solution of

the linear system

K e yj
yTj 0

� �
;

_uuj
_kkj

� �
¼ �sj

0

� �
; sj :¼ s½uj; kj�; ð4:12Þ

where K e is the elastic stiffness matrix defined by Eq. (4.3) and vector yj is defined, according to Eq. (4.8), as

yj :¼
Z
B

DTrs½ej; kj; kjþ1�dv ¼
1

kjþ1 � kj
ðs½uj; kjþ1� � s½uj; kj�Þ: ð4:13Þ

Eq. (4.12) is conveniently solved by partitioning. In explicit form, we obtain:

_kkj ¼ �
yTj K

�1
e sj

yTj K
�1
e yj

; _uuj ¼ �K�1
e sj � _kkjK

�1
e yj: ð4:14Þ

Note that kjþ1 ¼ kj þ _kkj is required in Eq. (4.13) for obtaining yj, so Eq. (4.13) couples with the first of

(4.14). However, kjþ1 can easily be obtained by iteration as the limit of the sequence

~kki :¼ kj �
~yyTi K

�1
e sj

~yyTi K
�1
e ~yyi

; ~yyi :¼
1

~kki � kj

ðs½uj; ~kki� � sjÞ ð4:15Þ

which is initialized by assuming the first evaluation for yj be defined as the initial tangent

yj � ~yy1 :¼ y½uj; kj; kj�: ð4:16Þ

The sequence implements the secant iteration, so it is always convergent. Actually it converges very fast

and, considering that its solution is used within an external iteration scheme, only one loop is usually

needed. For obvious reasons, it is also convenient to introduce the constraint kj þ _kkj 6
�kk.

The proposed solution algorithm is described in pseudo-code form in Table 1. Note that the iterative

process (4.11) and (4.12), for the kth step, is initialized by assuming

k1 :¼ kðk�1Þ þ bðkÞðkðk�1Þ � kðk�2ÞÞ;
u1 :¼ uðk�1Þ þ bðkÞðuðk�1Þ � uðk�2ÞÞ;

ð4:17Þ

bðkÞ being an appropriate scaling factor we can relate to iteration loops performed in the previous step
by taking
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bðkÞ ¼ nðk�1Þ � �nn
nðk�1Þ þ �nn

;

where nðk�1Þ is the number of loops performed in the previous step and �nn its assumed reference value
(typically �nn � 4; . . . ; 8). The same formula is used in the first step of the algorithm by making

fuð0Þ ¼ 0; rð0Þ ¼ 0; kð0Þ ¼ 0g; fuð1Þ ¼ 0; rð1Þ ¼ 0; kð1Þ ¼ keg
and assuming b1 as a small fraction (b1 � 0:01).

The iteration process stops and the step is assumed to have been performed when

ksjk6 tol1; ksk2 :¼ sTK�1
e s: ð4:18Þ

Finally, the algorithm is arrested when kðkÞ ¼ kðk�1Þ, within the assigned tolerance tol2. As we will see, that

implies the required shakedown solution has already been reached.

In the following subsections we will show the effectiveness of this strategy by proving that:

1. The sequence xj produced by the iterative scheme (4.11) and (4.12) converges to a new solution

xðkÞ :¼ fkðkÞ; rðkÞ; uðkÞg, characterized by rðkÞ 2 Es½kðkÞ� and s½uðkÞ; kðkÞ� ¼ 0. Then, according to Eq. (4.5),

it provides a lower bound ks for the shakedown safety factor ka.
2. The succession of shakedown states xðkÞ satisfies the condition kðkÞ P kðk�1Þ. Furthermore, the occurrence

of kðkÞ ¼ kðk�1Þ implies kðkÞ ¼ ka, so providing the shakedown solution.

Table 1

Pseudo-code for the proposed solution algorithm

1. Assemble and decompose matrix KE

2. Compute the elastic solutions ðuei ; re
i Þ for each basic load pi

ui :¼ K�1
E pi; ri :¼ EDui:

3. Compute the elastic limit multiplier ke and initialize the solution process

uð0Þ :¼ 0; rð0Þ ¼ 0; kð0Þ :¼ 0; uð1Þ :¼ 0; rð1Þ ¼ 0; kð1Þ :¼ ke:

4. Repeat for k ¼ 2; 3; . . .

(a) Evaluate, using Eq. (4.17):

k1 :¼ kðk�1Þ þ bðkðk�1Þ � kðk�2ÞÞ;
u1 :¼ uðk�1Þ þ bðuðk�1Þ � uðk�2ÞÞ:

(b) Repeat for j ¼ 1; 2; . . .

� Compute rj through Eq. (4.6)

� Compute vectors sj and yj through Eqs. (4.12) and (4.16)

� Evaluate the new estimate xjþ1:

kjþ1 ¼ kj þ _kkj

ujþ1 ¼ uj � K�1
E ðsj þ _kkjyjÞ

(
; _kkj ¼ �

yTj K
�1
E sj

yTj K
�1
E yj

:

Until ksjk6 tol1

(c) Update the solution

kðkÞ ¼ kj; uðkÞ :¼ uj; rðkÞ :¼ rj:

Until kðkÞ � kðk�1Þ
6 tol2

5. Obtain the solution of the shakedown problem

ka :¼ kðkÞ; ua :¼ uðkÞ; ra :¼ rðkÞ:
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4.3. Convergence of the iterative scheme (4.11) and (4.12)

In order to discuss the convergence of the iterative scheme, it is convenient to refer to the solution fli; zig
of the eigenvalue problem

½lK e � K j�z ¼ 0:

Both matrices K j and K e being symmetric and the first being positive defined, we know that li and zi are
characterized by the conditions:

zTi K ezj ¼
1 if i ¼ 0;
0 if i 6¼ j;

�
zTi K jzj ¼

li if i ¼ 0;
0 if i 6¼ j:

�
ð4:19Þ

Obviously, due to Eq. (4.10) we also have

06 li 6 1; 8i: ð4:20Þ
We are now ready to prove the following theorem:

Theorem 4.1 (convergence of the iterative scheme to a self-equilibrated solution). The sequence xj produced
by the iterative scheme (4.11) and (4.12) is convergent and its limit xðkÞ :¼ fkðkÞ; rðkÞ; uðkÞg is characterized by
rðkÞ 2 Es½kðkÞ� and s½uðkÞ; kðkÞ� ¼ 0.

Proof. By definition (4.14) we have

sjþ1 � sj ¼ K j _uuj þ _kkjyj;
_kkj :¼ �

yTj K
�1
e sj

yTj K
�1
e yj

; _uuj :¼ �K�1
e ðsj þ _kkjyjÞ

that provides

sjþ1 ¼ sj þ _kkjyj � K jK
�1
e ðsj þ _kkjyjÞ:

Then, expanding yj, sj and sjþ1 in terms of zi

yj ¼ K e

X
i

bizi; sj ¼ K e

X
i

aizi; sjþ1 ¼ K e

X
i

~aaizi; ð4:21Þ

we obtain, due to Eq. (4.19),

~aai ¼ ð1� liÞðai þ _kkjbiÞ ð4:22Þ
and therefore

ksjþ1k2 ¼
X
i

~aa2
i ¼

X
i

ð1� liÞ
2ða2

i þ _kk2
jb

2
i þ 2 _kkjaibiÞ: ð4:23Þ

Due to Eq. (4.1), we have

yTj _uuj ¼ �yTj K
�1
e ðsj þ _kkyjÞ ¼ 0 )

X
i

biðai þ _kkjbiÞ ¼ 0;

so we can simplify Eq. (4.23) into

ksjþ1k2 ¼
X
i

ð1� liÞ
2ða2

i � _kk2
jb

2
i Þ:

By comparison with

ksjk2 ¼
X
i

a2
i
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and using Eq. (4.20), we obtain

ksjþ1k6 ksjk

while

ksjþ1k
ksjk

< 1 if 9i : liai 6¼ 0 or _kkj 6¼ 0:

We then stated that the sequence fksjkg is monotonously non increasing. It is also bounded from below

(ksjkP 0) so it is convergent, while not necessarily to the limit ksk ¼ 0. We can prove, however, that the

occurrence limj ksjk > 0 is impossible. In fact, assuming

lim
j!1

ksjk > 0;

this implies

lim
j!1

_kkj ¼ 0; lim
j!1

liai ¼ 0; 8i

and, because of Eqs. (4.21) and (4.22),

lim
j!1

ðsjþ1 � sjÞ ¼ 0:

The sequence fsjg is then convergent and, by assumption,

sðkÞ ¼ lim
j!1

sj 6¼ 0:

We obtain, because of Eqs. (4.14) and (4.11)

lim
j!1

ðujþ1 � ujÞ ¼ �uu :¼ K�1
e sðkÞ 6¼ 0

while having

lim
j!1

Z
B
ðrjþ1 � rjÞTðejþ1 � ejÞdv ¼ lim

j!1
ðsjþ1 � sjÞTðujþ1 � ujÞ ¼ 0:

Due to Lemma 3.2, the latter implies limj!1 ðrjþ1 � rjÞ ¼ 0, therefore

lim
j!1

ðepjþ1 � e
p
j Þ :¼ lim

j!1
ðejþ1 � ejÞ ¼ �ee :¼ D�uu 6¼ 0:

As a consequence, we should have

lim
j!1

e
p
jþk ¼ e

p
j þ k�ee ) lim

j;k!1

1

k
e
p
jþk ¼ �ee;

but this implies

lim
j;k!1

ðujþkþ1 � ujþkÞTyjþk ¼ �uuTyjþk ¼
1

k

Z
B

e
p
jþkrs½ejþk; kjþk; kjþk�dv < 0

which is absurd being in contrast with the Eqs. (4.11) and (4.12) which give ðujþkþ1 � ujþkÞTyjþk ¼ 0, 8j; k.
Therefore, we necessarily have limj!1 ksjk ¼ 0. This implies the convergence of fsjg to a null vector

sðkÞ :¼ lim
j!1

sj ¼ 0
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and, as a consequence,

lim
j!1

ðujþ1 � ujÞ ¼ lim
j!1

K�1
e sj ¼ 0; lim

j!1
ðkjþ1 � kjÞ ¼ lim

j!1

yTj sj

yTj yj
¼ 0:

Both sequences fujg and fkjg are then also convergent and we can define

uðkÞ ¼ lim
j!1

uj; kðkÞ ¼ lim
j!1

kj:

Furthermore, ra½u; k� being continuous in both u and k, rj :¼ ra½uj; kj� is also convergent. So, being rj 2
Es½kj�, 8j by definition, we have

rðkÞ ¼ lim
j!1

rj 2 Es½kðkÞ�

which completes the proof. �

4.4. Convergence to the shakedown solution

The convergence of the sequence xðkÞ produced by the incremental process to the required shakedown

solution is stated by the following theorem:

Theorem 4.2 (convergence of the incremental process to the shakedown solution). The sequence kðkÞ is
characterized by

kðk�1Þ
6 kðkÞ

6 ka:

Furthermore, the occurrence of kðkÞ ¼ kðk�1Þ and uðkÞ 6¼ uðk�1Þ implies the achievement of the shakedown
solution:

ka ¼ kðkÞ:

Proof. We have, rðkÞ 2 S (according to Eq. (4.4)) and rðkÞ 2 Es for any k, by definition. So condition kðkÞ
6 ka

comes directly from Eq. (3.7). We also obtainZ
B
ðrðkÞ � rðk�1ÞÞTeðkÞ dv ¼ ðsðkÞ � sðk�1ÞÞTðuðkÞ � uðk�1ÞÞ ¼ 0:

Then, by letting

eðkÞ ¼ eðkeÞ þ eðkpÞ

and remembering Eq. (4.1), we haveZ
B
ðrðkÞ � rðk�1ÞÞTeðkpÞ dv ¼ �

Z
B

eðkeÞ
T

EeðkeÞ dv6 0:

This implies that kðkÞ P kðk�1Þ. In fact, if assuming kðkÞ < kðk�1Þ, rðk�1Þ 2 Es½kðk�1Þ� is internal to Es½kðkÞ� be-
cause of Eq. (3.3), then we should have, due to Drucker�s inequality (3.4),Z

B
ðrðkÞ � rðk�1ÞÞTeðkpÞ dv > 0

which is a contradiction.

The case kðkÞ ¼ kðk�1Þ is only possible if eðkeÞ ¼ 0. This implies

eðkpÞ ¼ eðkÞ ¼ DðuðkÞ � uðk�1ÞÞ
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that is, eðkpÞ 2 K and eðkpÞ 6¼ 0. Remembering that rðkÞ 2 S, we haveZ
B

rðkÞTeðkpÞ dv ¼ 0;

rðkÞ and eðkpÞ being associated by flow rule (3.10), by construction. The condition implies kðkÞ P ka, because

of Eq. (3.8). Conversely, we have kðkÞ
6 ka, as shown before. Therefore, we obtain kðkÞ ¼ ka, as stated by the

theorem. �

It is worth mentioning that the step-length is naturally forced by the arc-length strategy (4.17), (4.11) and

(4.12), so the solution process does not need any special artifice for avoiding a premature stop due to the

occurrence of uðkÞ ¼ uðk�1Þ.

4.5. A comment about computational updating of domain Es[k]

The shakedown admissible domain Es½k� defined in Section 3.2 is a key ingredient of the proposed
method. It has to be updated according to kj at each iteration loop of the incremental process. The

computational efficiency of its updating plays an important role in the analysis and specialized, fully op-

timized problem-dependent formulas should be used in general.

We discuss here the case when the yield conditions are piecewise linearized, that is, function f ½r� reduces
to a the m-faces polyhedron:

f ½r� :¼ max
k

nTk r
�

� ck
�
6 0; k ¼ 1; . . . ;m: ð4:24Þ

A very simple and fast formula is obtained in this case. According to Eq. (3.1), we have

fs½r; k� ¼ max
k

nTk r
�

� ck þ bk½k�
�
; bk½k� :¼ max

re2Se

fnTk reg:

The elastic stress envelope Se being defined by the polyhedron

Se :¼ re½t� :¼
Xp
i¼1

ai½t�rei : amin
i

(
6 ai½t�6 amax

i ; 8t
)
;

we have

bk½k� ¼ k
Xp
i¼1

aki; aki :¼
amin
i nTk rei if nTk rei < 0;

amax
i nTk rei if nTk rei P 0;

�
so fs½r; k� is simply obtained in the form

fs½r; k� ¼ max
k

nTk r
n

� ck þ k�bbk
o
; ð4:25Þ

where �bbk :¼
Pp

i¼1 aki is computed, once and for all, at the beginning of the process.

4.6. Some further comments

The described solution process can be viewed as a step-by-step incremental process aiming at simulating

the case of a proportional increasing loading evolution such that, in each step k, the load recycles within all

possible values in kðkÞP up to the achievement of elastic adaptation.

Within this interpretation, the proposed solution process corresponds to a standard path-following

incremental process. Iteration scheme (4.11) and (4.12) actually corresponds to an implementation of the

Riks arc-length scheme [16,17]. We know (e.g. see [40]) that this scheme can be written in the form
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eKK ~yy
DuTM c

� �
_uuj
_kkj

� �
¼ �sj

0

� �
;

where matrix eKK and vector ~yy are approximations for the Hessian K t :¼ os=ou and yt :¼ os=ok, Du :¼ uj � u0
and M and c express the metric used for measuring the distance in the fu; kg space:

kfDu;Dkgk2 :¼ Du
Dk

� �T
M �
� c

� �
Du
Dk

� �
:

So Eq. (4.12) corresponds to the following assumptions:

yt :¼ yj;
eKK :¼ K e; MDu :¼ yj; c ¼ 0:

Different, even better, choices are obviously possible and could be usefully investigated. Actually, the

convenience of our assumptions lies in the fact that, with the particular choice made, we can easily prove

the convergence of both the iteration scheme and the solution process. It is worth mentioning that a similar
assumption has been proposed in [14] for implementing a path-following solution process for limit analysis

problems.

It is also useful to note that, in addition to kðkÞ and rðkÞ, the proposed solution process also produces a

solution in terms of both displacements uðkÞ and total (cumulated) plastic strainsXk
i¼0

eðipÞ :¼
Xk
i¼0

DuðiÞ
�

� E�1rðiÞ�:
Obviously, these quantities are strictly related to the loading evolution law which is actually simulated and

then only define lower bounds. However they can provide useful information about the elastic adaptation

process and can be taken as reference values to be used, within a conventional safety criterion, for eval-

uating safety factors for displacement and plastic deformation limit states (the available upper bounds on

plastic strains [42–44] appears to wide for being suitable for technical purposes). Relations with the Ponter–
Martin extremal paths theory [41] could also be usefully investigated.

Finally, it is worth mentioning that shakedown analysis reduces to limit analysis when the load domain

simplifies to a single point p. So the proposed solution process can be directly used in limit analysis

problems. Actually it can be viewed as a slight variation of a standard path-following process for pro-

portionally increasing loads.

Differences are related to the use of the additional stress r 2 Es½k�. Path-following processes aiming to

recover limit analysis usually refer to the total stress r 2 E and use k directly as a load amplifier (see [14,17]).

So equilibrium is expressed by the condition

r½u; k� :¼ s½u� � kp ¼ 0;

s being the nodal response due to the plastically admissible stress field r associated to u, expressed in our

notations by

r :¼ ra½r0 þ Ee; 0�:
As a consequence, the correction scheme (4.12) becomes (see [14])

K e �p
�pT 0

� �
_uuj
_kkj

� �
¼ �r½uj; kj�

0

� �
; ð4:26Þ

where �p ¼ or=ok is used in place of yj. Obviously, for every kinematically compatible plastic strain field

ep :¼ Dup, we haveZ
B

rTep dv ¼ pTup > 0;
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so this substitution also guarantees convergence for the same motivations as in Theorems 4.1 and 4.2. We

can expect quite similar behaviour and convergence properties for the two schemes, as confirmed by the

numerical tests shown in Section 6.4. Note however that scheme (4.12) requires the computation of vector

yj at each loop that is skipped by the standard scheme (4.26), so it is slightly more expensive. For this

reason it has to be considered as not particularly convenient for limit analysis problems, that is when we are

in the presence of a single loading case.

5. Shakedown analysis of plane frames

We now discuss some of the implementation details of the proposed solution method by referring to the

shakedown analysis of plane frames. This is a very simple but also technically meaningful application

context, so it is particularly suitable for exemplification purposes.

5.1. Finite element discretization

Let us consider a beam element and indicate with indices i and jths end-sections. Assuming a local

reference system fx; yg with the x axes coincident with the beam axis, the kinematics of the beam is de-

scribed by the motion of the normal sections in the fx; yg plane, that is, by its axial u½x�, transversal w½x� and
rotational u½x� components. Stresses are described by the strength fields N ½x�, T ½x� and M ½x�, which express

the axial and shear forces and the bending moment acting on beam sections, respectively. Obviously, a self-

equilibrated stress field is expressed by

N ½x� ¼ constant; M ½x� ¼ linear; T ½x� ¼ M;x ¼ constant: ð5:1Þ

It is convenient to refer to the so-called natural stresses:

ma :¼ N‘; ms :¼ Mi þMj; me :¼ Mi �Mj: ð5:2Þ

We have:

N ½x� ¼ ma

‘
; T ½x� ¼ �me

‘
; M ½x� ¼ 1

2
msð þ með1� 2nÞÞ; ð5:3Þ

‘ :¼ xj � xi being the element length and n :¼ ðx� xiÞ=‘ a non-dimensional abscissa varying in ½0 � � � 1�.
The element strain energy can be easily expressed as

Ub :¼
‘

2

Z 1

0

N 2

EA

�
þ T 2

GA� þ
M2

EJ

�
dn; ð5:4Þ

where A, A� and J are the area, the equivalent shear area and the inertia of the section, and E and G the

normal and transversal elastic moduli. We also have, from Clapeyron�s theorem,

Ub ¼ 1
2
Nðuj
�

� uiÞ þ T ðwj � wiÞ þMiui �Mjuj

�
:

Therefore, by introducing the associated natural strains

/a :¼ ðuj � uiÞ=‘; /s :¼ ðui � ujÞ=2; /e :¼ ðui þ ujÞ=2� ðwj � wiÞ=‘; ð5:5Þ

we can write

Ub ¼
1

2

ma

ms

me

8<:
9=;

T
/a

/s

/e

8<:
9=;: ð5:6Þ
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By combining Eqs. (5.3), (5.4) and (5.6), we obtain

Ub ¼
1

2

/a

/s

/e

8<:
9=;

T
ka � �
� ks �
� � ke

24 35 /a

/s

/e

8<:
9=;; ð5:7Þ

where

ka ¼ EA‘; ks ¼
4EJ
‘

; ke ¼
12EJ

‘ð1þ bÞ ; b :¼ 12EJ
GA�‘2

:

By simple kinematical considerations we can relate the natural strains to the element displacement vector

(Fig. 3)

ub :¼ fUi;Wi ;ui;Uj;Wj;ujg
T ð5:8Þ

collecting displacements and rotations in the end-sections of the beam, with reference to a global Cartesian

system X , Y . We obtain

/a

/s

/e

8<:
9=; :¼ Abub; Ab :¼

�c=‘ �s=‘ 0 c=‘ s=‘ 0

0 0 1=2 0 0 �1=2
�s=‘ c=‘ 1=2 s=‘ �c=‘ 1=2

24 35 s ¼ sin a;
c ¼ cos a;

ð5:9Þ

a being the angle between the two reference systems. Therefore, by the definition

Ub :¼ 1
2
uTbKbub � uTb sb; ð5:10Þ

the element elastic stiffness matrix and the element internal forces vector can be expressed as:

Kb :¼ AT
b

ka � �
� ks �
� � ke

24 35Ab; sb :¼ AT
b

ma

ms

me

8<:
9=;: ð5:11Þ

The elastic stiffness matrix K e and the internal force vector s for the overall frame are obtained by standard

assemblage of all beam element contributions:

K e :¼
X
b

AðKbÞ; s :¼
X
b

AðsbÞ:

Fig. 3. Kinematics parameters and natural modes.
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5.2. Admissible domain

To simplify the analysis, we assume that the plastic admissibility condition for the beam element can be

expressed in terms of the bending moment M alone:

M�
y ½x�6M ½x�6Mþ

y ½x�;
M�

y ½x� and Mþ
y ½x� being the negative and positive yield bending values. With these assumptions, the elastic

domain becomes the line segment

E½x� :¼ M ½x� : M�
y ½x�

n
6M ½x�6Mþ

y ½x�
o
:

Denoting with M e
i ½x� the elastic solutions due to the basic external loads pi, the elastic stress domain is

defined by

Se½x� :¼ M e½x� : M e½x�
(

¼
Xp
i¼1

aiM e
i ½x�; amin

i 6 ai 6 amax
i

)
:

Then, by taking

M�
e ½x� :¼ minðM e½x�Þ; Mþ

e ½x� :¼ maxðM e½x�Þ; 8M e½x� 2 Se; ð5:12Þ
the admissible shakedown domain can be defined, according to Eq. (4.25), as

Es½k� :¼ fM ½x� : M�
y ½x� � kM�

e ½x�6M ½x�6Mþ
y ½x� � kMþ

e ½x�; 8M e½x� 2 S½x�g: ð5:13Þ

To implement condition M 2 Es½k� continuously in the entire interval x 2 ½0 � � � ‘� can be numerically

cumbersome. We choose here to require condition (5.13) to be satisfied only in the two cross-sections i and

j, that is we assume the shakedown beam-element admissible domain Esb½k� be expressed by the conditions

M�
yi � kM�

ei 6Mi 6Mþ
yi � kMþ

ei ; M�
yj � kM�

ej 6Mj 6Mþ
yj � kMþ

ej ; ð5:14Þ

where due to Eq. (5.3),

Mi ¼ ðms þ meÞ=2; Mj ¼ ðms � meÞ=2:
From Eq. (5.14) we can easily compute the largest admissible load amplifier �kk. We obtain

�kk ¼ min
Mþ

yk �M�
yk

Mþ
ek �M�

ek

� �
; 8k;

where k relates to the control end-sections of all beams of the frame.

It is worth remembering that Eq. (5.14) only represents a very simple, approximate, discrete implemen-

tation of condition (5.13), that however can be considered adequate for our purposes, the discretization error

being reduced by using sufficiently small elements. Other, even more convenient, choices are possible, for

instance that of using three discrete conditions, including the mid section. The convenience of the present
choice lies in a numerically straightforward implementation of the return mapping algorithm.

5.3. Return mapping for the beam element

Return mapping scheme (3.10) can be defined by expressing the Haar–K�aarm�aan condition (3.11) for the

whole element, that is

Ub :¼
1

2

ms � m�
s

me � m�
e

� �T
1=ks �
� 1=ke

� �
ms � m�

s

me � m�
e

� �
¼ min; fms;meg 2 Esb½k�; ð5:15Þ
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where

m�
s ¼ ms0 þ ksð/sj � /s0Þ; m�

e ¼ me0 þ keð/ej � /s0Þ

is the elastic estimate corresponding to uj. By referring to the end-section moments Mi, Mj and M�
i , M

�
j , we

obtain (Fig. 4):

Ub ¼
ke þ ks
kske

Mi �M�
i

Mj �M�
j

� �T
1 c
c 1

� �
Mi �M�

i

Mj �M�
j

� �
; c ¼ ke � ks

ke þ ks
: ð5:16Þ

So, the solution of problem (5.14) and (5.15) can be geometrically defined as in (5.17). Excluding banal

cases, it is then characterized by

ðM�
i �MiÞ þ cðM�

j �MjÞ ¼ 0 if Mj ¼ Mþ
yj � kMþ

ej or Mj ¼ M�
yj � kM�

ej ;

ðM�
j �MjÞ þ cðM�

i �MiÞ ¼ 0 if Mi ¼ Mþ
yi � kMþ

ei or Mi ¼ M�
yi � kM�

ei

(

and can be simply obtained, as the reader could easily verify, by the following algorithmic sequence:eMMi :¼ maxfM�
yi � kM�

ei ;minfM�
i ;M

þ
yi � kMþ

ei gg;

Mj :¼ maxfM�
yj � kM�

ej ;minfM�
i � cðM�

j � eMMiÞ;Mþ
yj � kMþ

ejgg;

Mi :¼ maxfM�
yi � kM�

ei ;minfM�
i � cðM�

j �MjÞ;Mþ
yi � kMþ

ei gg:

ð5:17Þ

Hence the solution in terms of natural stress is easily obtained:

ms :¼ Mi þMj; me :¼ Mi �Mj:

The process is synthesized in Table 2.

Fig. 4. Haar–K�aarm�aan problem for the beam element.
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6. Numerical results

Numerical results related to some simple test cases are presented in this section in order to show the

general behavior of the proposed solution method. All tests have been performed using an initial step-

length factor b0 ¼ 0:01 and a reference loop number �nn ¼ 6. A relative tolerance factor tf ¼ 10�5 has been

used for stopping the iteration scheme (4.11) by the condition

ksjk6 tf
ke

p

Xp
i

ðjamin
i j þ jamax

i jÞkpik:

The same value has been assumed for stopping the incremental process by the condition

kðkÞ � kðk�1Þ

kuðkÞ � uðk�1Þk < tf
kðkÞ

kuðkÞk ; kuk :¼ uTKu:

For all tests Mþ
y ¼ �M�

y ¼ My will be assumed.

6.1. A simple frame

The first numerical test presented refers to the frame in Fig. 5, where all beams have the same section. To
simplify the comparison with the analytical solution the shear contribution to strain energy is neglected

(b ¼ 0). The loads domain is defined as follows:

p½t� :¼ a1½t�P1 þ a2½t�P2; 06 a1 6 1; 06 a2 6 2;

P1 and P2 being the horizontal and vertical forces. The elastic stresses envelope for the most meaningful

sections of the frames are reported in Table 3.

The frame is subdivided into four beam elements. The elastic multiplier is obtained as ke ¼ 8My=7‘ ¼
228:5729 by the max negative bending moment in node 4, while the analytical value of the shakedown

multiplier is:

ka ¼
4My

‘
¼ 266:6667:

Table 2

Pseudo-code for the return mapping scheme

For each beam element:

1. Compute natural strains /s and /e due to uj through Eq. (5.5).

2. Compute the elastic prediction m�
s and m�

e

m�
s ¼ ms0 þ ksð/sj � /s0Þ; m�

e ¼ me0 þ keð/ej � /s0Þ:

3. Perform the Haar–K�aarm�aan sequenceeMMi :¼ maxfM�
yi � kM�

ei ;minfM�
i ;M

þ
yi � kMþ

ei gg;
Mj :¼ maxfM�

yj � kM�
ej ;minfM�

i � cðM�
j � eMMiÞ;Mþ

yj � kMþ
ejgg;

Mi :¼ maxfM�
yi � kM�

ei ;minfM�
i � cðM�

j �MjÞ;Mþ
yi � kMþ

ei gg:

4. Finally compute

ms :¼ Mi þMj; me :¼ Mi �Mj:
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Fig. 5. Simple and four-floor frames.

Table 3

The Mþ and M� function in some sections of the simple frame

M�
2 Mþ

2 M�
3 Mþ

3 M�
4 Mþ

4

)1875.0 2500 0 3125.0 )4375.0 0

Fig. 6. Evolution of the analysis for the simple and four-floor frame.
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The same values are obtained numerically. Fig. 6 reports the evolution of the shakedown multiplier versus

plastic rotation of node 4 and also shows the number of iterations performed in each step. From a com-

putational point of view the effort is, practically, the same as in elastic–plastic analysis using the same path-

following formulation.

6.2. Four-floor frame

The second test-case refers to the simple four-floor frame under vertical and seismic forces shown in Fig.
5. The beam properties and the basic loads are also shown in the figure. The load domain is defined as

follows:

p½t� ¼
X3
i¼1

ai½t�p1; 0:956 a1½t�6 1:05; 06 a2½t�6 1; �0:56 a3½t�6 0:5:

One element is used to describe each column and two for each horizontal beam. The incremental process
stopped after 19 steps (252 total loops) by providing the evaluation ka ¼ 2:57129 for the shakedown safety

factor (due to the presence of the distributed transversal load, this value, while accurate, is affected by some

discretization error).

6.3. Large dimension frames

The advantages of the present method, when compared with other proposals, are obviously more and

more evident as the number of elements increase. Table 5 reports some performance data referring to a
series of test-cases relative to regular frames with different numbers of floors (nf ) and spans (ns). A constant

floor height hf ¼ 300 and a constant span length ls ¼ 400 is assumed for simplicity and 3 load conditions

are assumed: two distributed vertical loads p1 ¼ 10 and p2 ¼ 5 and a seismic action defined as transversal

floor forces linearly increasing by 500 from the ground to the top floor (see Fig. 7).

Beam properties are reported in Table 4 and the load domain is defined by

p½t� ¼
X3
i¼1

ai½t�p1; 0:96 a1½t�6 1:0; 06 a2½t�6 1; �1:06 a3½t�6 1:0:

Fig. 7. Large dimension frame: geometry and loads for a 3� 4 frame.
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The results of the analysis are shown in Table 5 which reports the total number of steps and loops, the
computational times required by the assemblage and decomposition of the stiffness matrix and that re-

quired by the incremental process. Times are expressed in milliseconds of Pentium II-300 Pc.

Note that the total number of loops is approximately constant (it actually depends on the tolerance

assumed and, in some unpredictable manner, on the problem). So the time required by the incremental

process is directly related to the dimension of the problems and tends to increase more slowly than that

required by the decomposition of the elastic matrix. Computational times of 721 and 35 ms (Pentium II

300) have been required for the incremental process and the matrix decomposition in the 6� 10 frame with

a ratio of about 20. However this can be considered a case of relatively small dimensions (117 D.O.F.) and
we can expect much smaller ratios for very large problems (thousands of D.O.F.) we can obtain by finite

element discretizations of two- and three-dimensional continua.

6.4. Limit analysis problems

In Table 6, the numerical performances of the proposed scheme (4.12) are compared with that of a

standard path-following scheme (4.26) for limit analysis problems. The analysis has been performed for the

same test cases discussed in the previous section but assuming a fixed load combination defined by ai ¼ 1:0, 8i.
Note that the performances of the two schemes, in terms of both steps and number of loops, are almost

the same, as expected (the standard scheme, which does not require the computation of vector yj, is
however more convenient in this case).

7. Conclusions

A formulation of the shakedown problem, suitable for performing numerical analyses, has been
presented. An incremental-iterative solution method has been proposed which is able to provide the

Table 4

Beams mechanical properties for large frames

A J My

Vertical beams 1800 540,000 1,800,000

Horizontal beams 900 67,500 450,000

Table 5

Numerical performance of the proposed method for large frames

ns � nf ka Steps Loops

3� 4 2.013382 32 240

4� 6 1.399336 36 179

5� 9 0.753276 30 140

6� 10 0.720903 32 154

Table 6

Comparison between schemes (4.26) and (4.12) in limit analysis of large frames

ns � nf ke kc Scheme (4.26) Scheme (4.12)

Steps Loops Steps Loops

3� 4 1.29336 2.46118 15 217 22 261

4� 6 0.92763 1.86096 24 462 42 524

5� 9 0.58349 1.20000 56 734 74 779

6� 10 0.56268 1.15325 69 937 87 963
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shakedown solution in a general FEM context. Its convergence features have been discussed and proved
and, as an example, its implementation has been detailed for the simple context of plane frames.

The proposed strategy appears to be more efficient than other numerical methods proposed in litera-

ture, especially for large dimension problems where the matrix operation prevail. In fact, it requires

essentially:

1. The assemblage and the triangular decomposition of the elastic stiffness matrix K e once and for all. This

is a standard process, also needed for the elastic analysis, which requires about nm2=2 basic floating-

point operations, n being the dimension of the matrix and m its half-band size.
2. The elastic solution ui ¼ K�1

e pi for each of the basic loads pi. This is also a standard process and requires

about 2pnm floating-point operations, p being the number of basic loads.

3. A series of iteration loops, each performing an evaluation of sj ¼ s½uj; kj� and yj ¼ y½uj; kj; kj� for given uj
and kj and the solutions _uu ¼ �K�1

e ðsj þ ðkjþ1 � kjÞyjÞ. This requires about 4nm floating-point operations

for each loop.

Denoting with p, s and l the number of basic loads, steps and average loops per single step, the entire

shakedown solution process then requires about

1
2
nm2 þ ð2p þ 4slÞnm

floating-point operations. We experienced s � 30 and l � 5 for our frame tests and can expect the same or

even smaller values in large finite element discretizations of bi-dimensional problems where the evolution of

the plastic process could be more regular. Therefore, when considering very large structures, that is for

large m, the computational burden of shakedown analysis should become comparable with that needed by a

simple elastic solution which will require nm2=2þ 2pnm operations.

In this way it is apparent that the proposed method is much more efficient than direct methods based on

standard optimization algorithms. It is also more efficient than iterative formulations based on the so-called

elastic compensation method of Ponter [32,33]. The latter in fact develops into a sequence of linear analyses
each of which requires a complete assemblage and decomposition of a pseudo-elastic matrix (so about

nm2=2þ 2nm for each step). Furthermore its convergence is relatively slow, so the number of successive

analyses can be large (several tens, according to [33]). The computational advantages are evident, partic-

ularly for large structures.

The proposed method has real minimal implementational differences with respect to the standard path-

following algorithms currently used for evaluating the equilibrium path of an elastic–plastic structure. This

fact should make it very easy to modify commercial codes aimed at the elastic–plastic analysis into codes

able to perform shakedown analysis in technically relevant applications.
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